Super quantum simulator 'entangles' hundreds of ions > 우주론

본문 바로가기
사이트 내 전체검색


양자물리학 Super quantum simulator 'entangles' hundreds of ions

페이지 정보

작성자 우주나무 댓글 1건 조회 1,844회 작성일 16-06-13 02:01


Super quantum simulator 'entangles' hundreds of ions

June 9, 2016
NIST's super quantum simulator 'entangles' hundreds of ions
NIST physicists have built a quantum simulator made of trapped beryllium ions (charged atoms) that are proven to be entangled, a quantum phenomenon linking the properties of all the particles. The spinning crystal, about 1 millimeter wide, …more

Physicists at the National Institute of Standards and Technology (NIST) have "entangled" or linked together the properties of up to 219 beryllium ions (charged atoms) to create a quantum simulator. The simulator is designed to model and mimic complex physics phenomena in a way that is impossible with conventional machines, even supercomputers. The techniques could also help improve atomic clocks.


The new NIST system can generate quantum entanglement in about 10 times as many ions as any previous simulators based on ions, a scale-up that is crucial for practical applications. The behavior of the entangled ions rotating in a flat crystal just 1 millimeter in diameter can also be tailored or controlled to a greater degree than before.

Described in the June 10, 2016, issue of ScienceNIST's latest simulator improves on the same research group's 2012 version by removing most of the earlier system's errors and instabilities, which can destroy fragile quantum effects.

"Here we get clear, indisputable proof the ions are entangled," NIST postdoctoral researcher Justin Bohnet said. "What entanglement represents in this case is a useful resource for something else, like quantum simulation or to enhance a measurement in an atomic clock."

In the NIST quantum simulator, ions act as quantum bits (qubits) to store information. Trapped ions are naturally suited to studies of quantum physics phenomena such as magnetism.

Quantum simulators might also help study problems such as how the universe began, how to engineer novel technologies (for instance, room-temperature superconductors or atom-scale heat engines), or accelerate the development of quantum computers. According to definitions used in the research community, quantum simulators are designed to model specific quantum processes, whereas quantum computers are universally applicable to any desired calculation.

Quantum simulators with hundreds of qubits have been made of other materials such as neutral atoms and molecules. But trapped ions offer unique advantages such as reliable preparation and detection of quantum states, long-lived states, and strong couplings among qubits at a variety of distances.

In addition to proving entanglement, the NIST team also developed the capability to make entangled ion crystals of varying sizes—ranging from 20 qubits up to hundreds. Even a slight increase in the number of particles makes simulations exponentially more complex to program and carry out. The NIST team is especially interested in modelling quantum systems of sizes just beyond the classical processing power of conventional computers.

"Once you get to 30 to 40 particles, certain simulations become difficult," Bohnet said. "That's the number at which full classical simulations start to fail. We check that our simulator works at small numbers of ions, then target the sweet spot in this midrange to do simulations that challenge classical simulations. Improving the control also allows us to more perfectly mimic the system we want our simulator to tell us about."

The ion crystals are held inside a Penning trap, which confines charged particles by use of magnetic and electric fields. The ions naturally form triangular patterns, useful for studying certain types of mag-netism. NIST is the only laboratory in the world generating two-dimensional arrays of more than 100 ions. Based on lessons learned in the 2012 experiment, NIST researchers designed and assembled a new trap to generate stronger and faster interactions among the ions. The interaction strength is the same for all ions in the crystal, regardless of the distances between them.

The researchers used lasers with improved position and intensity control, and more stable magnetic fields, to engineer certain dynamics in the "spin" of the ions' electrons. Ions can be spin up (often envisioned as an arrow pointing up), spin down, or both at the same time, a quantum state called a super-position. In the experiments, all the ions are initially in independent superpositions but are not communicating with each other. As the ions interact, their spins collectively morph into an entangled state involving most, or all of the entire crystal.

Researchers detected the spin state based on how much the ions fluoresced, or scattered laser light. When measured, unentangled ions collapse from a superposition to a simple spin state, creating noise, or random fluctuations, in the measured results. Entangled ions collapse together when measured, reducing the detection noise.

Crucially, the researchers measured a sufficient level of noise reduction to verify entanglement, results that agreed with theoretical predictions. This type of entanglement is called spin squeezing because it squeezes out (removes) noise from a target measurement signal and moves it to another, less import-ant aspect of the system. The techniques used in the simulator might someday contribute to the development of atomic clocks based on large numbers of ions (current designs use one or two ions).

"The reduction in the quantum noise is what makes this form of entanglement useful for enhancing ion andatomic clocks," Bohnet said. "Here, spin squeezing confirms the simulator is working correctly, because it produces the quantum fluctuations we are looking for."



Robert님의 댓글

Robert 작성일 Christian Louboutin Fjallraven Kanken Ferragamo Pandora Nike Air Huarache Jordan retro 14 Jordan 9 Yeezy Boost Jordan 1 Retro High Nike Free rn Pandora Air Jordan Sneakers Louboutin Shoes Pandora Charm Adidas Ultra Boost Asics Outlet Christian Louboutin shoes Vans Adidas NMD R1 Air Jordan 10 Yeezy Shoes Jordan 1 Air Force 1 High Nike Running Shoes For Men Pandora Charms Jordan 13 Retro Nike Store Pandora Earrings Adidas NMD Nike Clearance Red Bottom Shoes Nike Factory Outlet Jordan 11 Kyrie Irving Shoes Nike Outlet Store Pandora Outlet Jordan 7 Moncler Outlet UK Pandora UK Pandora Necklace Louboutin Shoes Nike Sneakers For Women Nike Air Max 270 Womens Nike Air Max 720 Nike Air Max 270 Pandora Rings Red Bottom Heels Jordan 1 Nike Basketball Shoes Jordan 13 Retro Air Jordan Retro Nike Shoes Nike Air Jordans Louboutin Shoes Nike Outlet Pandora Jewelry Jordan 3 New Shoes Jordan Shoes For Men Nike Shoes Nike Outlet Store Online Nike Website Christian Louboutin Air Max 720 Nike Outlet Store Jordan AJ 1 Mid Pandora Jewelry Pandora Bracelets For Women Nike Sneakers For Men Christian Louboutin Shoes Lebron James Shoes Pandora Necklace Ferragamo Belt Pandora Jewelry Official Site USA Adidas Sneakers Nike Clearance Outlet Air Jordan Shoes Jordan 11 Bred Nike Cortez Men Nike Lebron 16 Yeezy 500 Blush Yeezys Nike Outlet Lebron 16 Nike Outlet Online Nike Air Max 98 Red Bottom Shoes For Women Nike Shoes Yeezy Boost 350 Jordans Mens Nike Shoes Nike Shoes Cheap Nike Pandora Air Jordan 11 Nike Air Force Jordan 8 Jordan 32 Kyrie Irving Basketball Shoes Michael Jordan Shoes Nike Outlet Store Online Shopping New Air Max 2019 Fjallraven Backpack Christian Louboutin Jordan 4s Air Max 95 Adidas Yeezy Nike Outlet Ultra Boost Nike Shoes For Men Lebron Shoes Yeezy Nike Outlet Store Online Shopping Golden Goose Nike Clearance Sale Nike Air Force 1 Nike Air Max 98 Gundam Jordan 1 Mids Pandora Bracelets Nike Clearance Nike Shoes Nike Zoom Pegasus Nike Factory Christian Louboutin Shoes Air Jordans Sneakers Pandora Jewelry Official site Nike Epic React Air Jordan 11 Retro Nike Factory Outlet Nike Cyber Monday Nike Outlet Store Nike Air Max Nike Shoes Jordan Retro 4 Nike Cortez Women Nike Running Shoes For Men Adidas Yeezy Nike KD Shoes Louboutin Shoes Nike Outlet Store Online Shopping New Jordans Coming Out Nike Sneakers For Men Nike Shoes Nike Shoes For Women Nike Air Force Nike Air Zoom Jordan 1 Pandora Charms Sale Clearance Jordan Kids Jordan 12's Jordans 1 Nike Presto Valentino Nike Basketball Shoes Pandora Rings Air Jordan Sneakers Nike Shoes Nike Free Nike Outlet Store




Copyright © All rights reserved.